

Lösung diophantischer Gleichungen

1) (x; y) = (0; 4) (Z.B., es sind auch alle anderen möglich)

Weitere Lösungen sind z.B. (x; y) = (1; 2); (-1; 6); (-2; 8); (3; -2); (2; 0)

Allgemeine Lösung:

Löse die Gleichung $2 \cdot x + 1 \cdot y = 4$ nach y auf und setze x = z:

Alle Lösungen lauten (x; y) = (z; 4 - 2z)

2) Bestimme die Lösungen der folgenden Gleichungen:

a) $4 \cdot x + y = 8$

$$(x;y) = (z; 8 - 4z); z \in \mathbb{Z}$$

b)
$$8 \cdot x + 4 \cdot y = 4$$
 $(x; y) = (z; 1 - 2z); z \in \mathbb{Z}$

c)
$$3 \cdot x + 12 \cdot y = 6$$
 $(x; y) = (-2 + 4z; z); z \in \mathbb{Z}$

d) $3 \cdot x + y = 2$

$$(x;y) = (2-3z;z_i); z_i \in \mathbb{Z}$$

e)
$$3 \cdot x + 2 \cdot y = 4$$
 $(x; y) = (2 - 3z; z); z \in \mathbb{Z}$

3) $5 \cdot x + 10 \cdot y = 4$: es existieren keine Lösungen

Es gilt:

eine diophantische Gleichung $a \cdot x + b \cdot y = c$ hat genau dann Lösungen, wenn gilt: ggT(a;b) | c.

4) Untersuche die gegebenen diophantischen Gleichungen, ob sie Lösungen besitzen:

a) $12 \cdot x + 2 \cdot y = 8$ Ja / Nein, denn: ggT(2; 12) = 2; 2 | 8

b) $3 \cdot x + 17 \cdot y = 21$ Ja/Nein, denn: ggT(3; 17) = 1; 1/21

c) $4 \cdot x + 20 \cdot y = 2$ $\frac{J_a}{N_{ein}}$, denn: $ggT(4; 20) = 4; 4 \nmid 2$