M A T H E A Z H T P T H G A

Lückentext E: Einfluss der Kenngrößen der Normalverteilung auf die Form der Glockenkurve

1) Die Tabelle zeigt verschiedene Beispiele für Normalverteilungen. Analysieren Sie die Zusammenhänge zwischen den Kenngrößen Erwartungswert μ bzw. Standardabweichung σ , Lage und Form sowie Gleichung der Glockenkurve. Betrachten Sie insbesondere auch den Bereich $[\mu - \sigma; \mu + \sigma]$

Kenngrößen	Glockenkurve	Gleichung	Kenngrößen	Glockenkurve	Gleichung
μ = 8 σ = 1	y 0,4	$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-8)^2}{2}}$	μ = 4 σ = 2	0,4 0,3 0,2 0,1 0 2 4 6 8 10 12	$\varphi(x) = \frac{1}{2 \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-4)^2}{8}}$
μ = 8 σ = 2	0,3 0,2 0,1 0 2 4 6 8 10 12 14 16	$\varphi(x) = \frac{1}{2 \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x \cdot 8)^2}{2 \cdot 2^2}}$	μ = 10 σ = 2	0,1 0,2 0,1 0 2 4 6 8 10 12 14 16	$\varphi(x) \approx \frac{1}{25} \cdot e^{-\frac{(x-10)^2}{200}}$
μ = 8 σ = 4	0,3 0,2 0,1 0 2 4 6 8 10 12 14 16	$\varphi(x) = \frac{1}{4 \cdot \sqrt{2\pi} \cdot} \cdot e^{-\frac{(x \cdot 8)^2}{2 \cdot 4^2}}$	$\mu = 0.8$ $\sigma = 0.2$	0,5 0 0,2 0,4 0,6 0,8 1 1,2	$\varphi(x) \approx \frac{1}{0.5} \cdot e^{-\frac{(x-0.8)^2}{0.08}}$

2) Ergänzen Sie folgenden Lückentext:

An der Stelle ______ hat die Glockenkurve ______ .

Je _____ die Standardabweichung, desto ______ verläuft die Glockenkurve.

An den Stellen _____ verläuft die Glockenkurve am steilsten.

3) Für die sogenannte Standard-Normalverteilung gilt:

Kenngrößen	Glockenkurve	Gleichung	
μ = 0 σ = 1	0,4 0,3 0,2 0,1 -4 -3 -2 -1 0 1 2 3 4	$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$	

Beschreiben Sie, wie sich eine Veränderung des Erwartungswertes auf Kurve und Gleichung auswirkt.

Beschreiben Sie, wie sich eine Veränderung der Standardabweichung auf Kurve und Gleichung auswirkt.

4) Notieren Sie weitere Beobachtungen und Zusammenhänge.