Umgang mit Formeln – Formelspiel

Vorbereitung

- Karten ausdrucken
- Karten evtl. laminieren
- Karten ausschneiden
- Tipp: Jedes Kartenset (= 2 Bögen) in einer eigenen Farbe ausdrucken, so dass man es nach dem Spiel leichter sortieren kann

Spiel 1 (Sortieren)

- Jedes Trio (3er-Set) besteht aus einer physikalischen Größe, einer Beschreibung als Formel und einer Beschreibung in Worten.
- Die Karten werden durcheinander auf dem Tisch ausgelegt.
- Alle versuchen gleichzeitig, Trios zu finden und vor sich auszulegen.
- · Wer die meisten Trios gefunden hat, gewinnt.

Spiel 2 (Trio-Zwillingsspiel)

- Jedes Trio (3er-Set) besteht aus einer physikalischen Größe, einer Beschreibung als Formel und einer Beschreibung in Worten.
- Die Karten werden mit der Rückseite nach oben auf dem Tisch ausgelegt.
- Reihum dürfen jeweils 3 Karten umgedreht werden.
- Bilden die 3 Karten ein Trio, darf der Spieler sie an sich nehmen.
- Bilden die 3 Karten KEIN Trio, werden die Karten wieder umgedreht.
- Wer die meisten Trios gefunden hat, gewinnt.

Spiel 3 (Ablegen)

- Jedes Trio (3er-Set) besteht aus einer physikalischen Größe, einer Beschreibung als Formel und einer Beschreibung in Worten.
- 3 bis 4 Mitspieler
- Jeder bekommt 7 Karten. Der Rest wird umgedreht als Nachziehstapel ausgelegt.
- Die Mitspieler legen reihum Duos oder Trios aus. Einzelne Karten dürfen nur an bereits ausgelegte Duos (auch der Mitspieler) angelegt werden.
- Wer nichts auslegen kann, muss eine Karte vom Nachziehstapel ziehen.
- Wer zuerst keine Karten mehr hat, gewinnt.

Dichte	$\rho = \frac{m}{V}$	das Verhältnis aus Masse und Volumen eines Körpers
Geschwindigkeit	$V = \frac{\Delta s}{\Delta t}$	das Verhältnis aus zurückgelegter Strecke und dafür benötigter Zeitspanne
Beschleunigung	$a = \frac{\Delta V}{\Delta t}$	das Verhältnis aus Geschwindigkeitsänderung und Zeitspanne
Impuls	$p = m \cdot v$	das Produkt aus Masse eines Körpers und seiner Geschwindigkeit
Kraft	$F = \frac{\Delta p}{\Delta t}$	das Verhältnis aus Impulsänderung und Zeitspanne
Lageenergie	$E = m \cdot g \cdot h$	das Produkt aus Masse eines Körpers, Ortsfaktor und Höhe
Leistung	$P = \frac{\Delta E}{\Delta t}$	das Verhältnis aus Energieübertrag und Zeitspanne
Bewegungsenergie	$E = \frac{1}{2} \cdot m \cdot v^2$	das Produkt aus halber Masse eines Körpers und dem Quadrat der Geschwindigkeit
Newton'sche Grundgleichung	F = m·a	das Produkt aus Masse eines Körpers und der Beschleunigung
Spannenergie	$E = \frac{1}{2} \cdot D \cdot s^2$	das Produkt aus halber Federkonstante und dem Quadrat der Auslenkung
Gewichtskraft	$F_{\rm G} = m \cdot g$	das Produkt aus Masse eines Körpers und dem Ortsfaktor
Mechanische Leistung	$P = F \cdot V$	das Produkt aus Kraft und Geschwindigkeit

Elektrische Stromstärke	$I = \frac{\Delta Q}{\Delta t}$	das Verhältnis aus geflossener Ladung und Zeitspanne
Elektrischer Widerstand	$R = \frac{U}{I}$	das Verhältnis aus Spannung und Stromstärke
Maschenregel	$U_1 + U_2 + \cdots = 0 \text{ V}$	Die Summe der Spannungen in einer "Masche" ist Null
Elektrischer Widerstand	$R = \frac{\Delta \varphi}{I}$	das Verhältnis aus Potenzialdifferenz und Stromstärke
Knotenregel	$I_1 + I_2 + \cdots = 0 A$	Die Summe der Stromstärken in einem "Knoten" ist Null
Elektrische Leistung	P = U · I	das Produkt aus Spannung und Stromstärke
Elektrische Spannung	$U = \Delta \varphi$	die Differenz des Potenzials an zwei Stellen
Elektrische Leistung	$P = R \cdot I^2$	das Produkt aus Widerstand und Quadrat der Stromstärke
Elektrische Leistung	$P = \frac{U^2}{R}$	Der Quotient aus dem Quadrat der Spannung und dem Widerstand
Entropiestromstärke	$I_{S} = \frac{\Delta S}{\Delta t}$	das Verhältnis aus übertragener Entropie und Zeitspanne
Thermische Energie	$\Delta E = T \cdot \Delta S$	das Produkt aus absoluter Temperatur und übertragener Entropie
Thermische Leistung	$P = T \cdot I_{S}$	das Produkt aus absoluter Temperatur und Entropiestromstärke