Anforderungsniveau
Das Leistungsfach geht quantitativ wie qualitativ über die Anforderungen des Basisfaches hinaus.
Der Unterricht im Leistungsfach findet auf erhöhtem Anforderungsniveau statt und intendiert somit mehr als die Sicherung einer breiten Grundbildung. Durch ein verstärktes wissenschaftspropädeutisches Vorgehen werden sowohl ein erweitertes und vertieftes Verständnis mathematischer Begriffe und Zusammenhänge als auch deren Verwendung für Argumentationen gefördert. Auf diese Weise wird im Leistungsfach einerseits ein erhöhter Komplexitätsgrad erreicht und andererseits auch ein größerer Umfang an mathematischen Themen und Inhalten behandelt.
Das Basisfach wird auf grundlegendem Anforderungsniveau unterrichtet, d. h. es zielt auf eine allgemeine Orientierung und die Sicherung einer breiten Grundbildung ab. Der Unterricht im Basisfach fördert durch verstärktes realitätsbezogenes Vorgehen die Einsicht, dass Mathematik auch ein geeignetes Mittel zur Bearbeitung von Fragestellungen außerhalb der Mathematik ist. Im Basisfach erwerben und erweitern die Schülerinnen und Schüler Kompetenzen, die ihnen das Erkennen und Erläutern mathematischer Zusammenhänge und verständiges mathematisches Handeln ermöglichen. Die Inhalte werden dabei im Unterricht stärker vorstrukturiert und Argumentationen erfolgen häufig anschaulich oder anhand von heuristischen Überlegungen.
Um die Unterschiede zwischen Basisfach und Leistungsfach in Bezug auf Komplexitäts-, Vertiefungs-, Präzisierungs- und Formalisierungsgrad zu verdeutlichen, bietet es sich an, den „Basisfachplan“ und den Bildungsplan 2016 u.a. im Hinblick auf die verwendeten Operatoren vergleichend zu betrachten. Exemplarisch soll dies an einigen Beispielen erläutert werden:
Basisfach | Leistungsfach |
Bedeutung der Basis e beschreiben | Bedeutung der Basis e erläutern |
Beschreiben: „Sachverhalte in vollständigen Sätzen mit eigenen Worten wiedergeben.“
Mögliche, konkrete Formulierung: „Bei der Exponentialfunktion zur Basis e stimmen Ableitungsfunktion und Funktion überein.“
Erläutern: „Sachverhalte auf der Grundlage von Vorkenntnissen so darlegen und veranschaulichen, dass sie verständlich werden.“
Zusätzlich zum Beschreiben (Basisfach) einen Weg zur obigen Erkenntnis ausgehend vom Differenzenquotienten zur Basis e erläutern.
Basisfach | Leistungsfach |
Hauptsatz der Differential- und Integralrechnung anwenden | Inhalt des Hauptsatzes der Differential- und Integralrechnung angeben |
Im Basisfach genügt es, Bestandsänderungen und (orientierte) Flächeninhalte mit den bekannten Regeln zu berechnen – ein Angeben des formalen Hauptsatzes wird nicht erwartet.
Im Leistungsfach wird zusätzlich erwartet, dass die Schülerinnen und Schüler den Inhalt des Hauptsatzes in eigenen Worten formal und abstrakt formulieren können.
Basisfach | Leistungsfach |
Verkettungen von Funktionen erkennen | Funktionen verketten und Verkettungen von Funktionen erkennen |
Im Basisfach genügt es, dass bei einer gegebenen verketteten Funktion die innere (lineare) und äußere Funktion erkannt werden, um dann z.B. die Kettenregel anzuwenden.
Zusätzlich wird im Leistungsfach auch ein aktives Verketten gegebener Funktionen erwartet.
Basisfach | Leistungsfach |
Gaußverfahren auf LGS ohne Parameter bis zur Stufenform anwenden Lösungsvielfalt erkennen und im Fall der Eindeutigkeit Lösung angeben |
Gaußverfahren als ein Beispiel für ein algorithmisches Verfahren erläutern Gauß-Verfahren durchführen und Lösungsmenge angeben |
Im Basisfach bearbeiten die Schülerinnen und Schüler ausschließlich LGS ohne Parameter und formen diese bis zur Stufenform um, welche sie dann im Hinblick auf die Lösungsvielfalt interpretieren.
Im Leistungsfach wird zusätzlich ein Verständnis für den Algorithmus erwartet, sowie die formale Angabe der Lösungsmenge.
Basisfach | Leistungsfach |
Unterschied zwischen diskreten und stetigen Verteilungen am Beispiel binomial- und normalverteilter Zufallsgrößen beschreiben |
Unterschied zwischen diskreten und stetigen Verteilungen erläutern |
Beschreiben: „Sachverhalte in vollständigen Sätzen mit eigenen Worten wiedergeben.“
Unterschiede z.B. an der Anzahl defekter Schrauben (𝐤 ∈ 𝐈𝐍) in einer Stichprobe und der Streuung der Masse der Schrauben einer Stichprobe um einen Mittelwert erläutern, dabei auch auf die Darstellungsformen Histogramm <-> Glockenkurve eingehen.
Erläutern: „Sachverhalte auf der Grundlage von Vorkenntnissen so darlegen und veranschaulichen, dass sie verständlich werden.“
Unterschiede auch an anderen Verteilungen bzw. allgemein erläutern. Zusätzlich die Kenntnisse aus der Analysis miteinbringen.
Ergänzende Hinweise: Herunterladen [docx][127 KB]
Ergänzende Hinweise: Herunterladen [pdf][333 KB]
Weiter zu Abiturrelevante Inhalte der Kursstufe